RESEARCH REPORT

ERNESTO CESAR PINTO LEAL JUNIOR, PT, PhD¹ • RODRIGO ÁLVARO BRANDÃO LOPES-MARTINS, PhD² • LUCIO FRIGO, PhD³ THIAGO DE MARCHI, PT⁴ • RAFAEL PAOLO ROSSI, PT⁵ • VANESSA DE GODOI, PT⁵ • SHAIANE SILVA TOMAZONI, PT⁶ • DANIELA PERIN SILVA⁷ MAIRA BASSO, PT⁷ • PEDRO LOTTI FILHO⁸ • FRANCISCO DE VALLS CORSETTI⁸ • VEGARD V. IVERSEN, PhD⁹ • JAN MAGNUS BJORDAL, PT, PhD¹⁰

Effects of Low-Level Laser Therapy (LLLT) in the Development of Exercise-Induced Skeletal Muscle Fatigue and Changes in Biochemical Markers Related to Postexercise Recovery

hysical therapists use a variety of electrophysical agents. In some instances, these electrophysical agents are used to enhance the recovery between training sessions, to prevent sports injuries and, consequently, improve an athlete's performance. Studies

investigating the effects of commonly used interventions, such as massage, lowintensity exercises, cryotherapy, hot-cold contrast baths, neuro-muscular electrical stimulation, and stretching, are few, and the results on effectiveness are mixed.³ The rationale behind the use of these interventions is often related to mechanisms such as reducing postexercise inflammatory responses and the promotion of circulation and local metabolism STUDY DESIGN: Randomized crossover double-blinded placebo-controlled trial.

• **OBJECTIVE:** To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery.

 BACKGROUND: Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations.

• **METHODS:** Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; λ = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion.

• **RESULTS:** Active LLLT increased the number of repetitions by 14.5% (mean \pm SD, 39.6 \pm 4.3 versus 34.6 \pm 5.6; *P* = .037) and the elapsed time before exhaustion by 8.0% (*P* = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (*P* < .01), creatine kinase activity (*P* = .017), and C-reactive protein levels (*P* = .047), showing a faster recovery with LLLT application prior to the exercise.

• **CONCLUSION:** We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactive protein.

 LEVEL OF EVIDENCE: Performance enhancement, level 1b. J Orthop Sports Phys Ther 2010;40(8):524-532. doi:10.2519/jospt.2010.3294

• **KEY WORDS:** biceps, skeletal muscle damage, skeletal muscle performance

¹Associate Professor, Center for Research and Innovation in Laser, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil; Visiting Researcher, Section for Physiotherapy Science, Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway. ²Associate Professor, Laboratory of Pharmacology and Experimental Therapeutics, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Associate Professor, Center for Research and Innovation in Laser, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil, ³Associate Professor, Biological Sciences and Health Center, Cruzeiro do Sul University, São Paulo, SP, Brazil. ⁴Masters student, Laboratory of Human Movement, University of Caxias do Sul, Caxias do Sul, RS, Brazil. ⁵Masters student, Laboratory of Pharmacology and Experimental Therapeutics, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil. ⁶Masters student, Laboratory of Human Movement, University of Caxias do Sul, RS, Brazil; São Paulo, SP, Brazil. ⁶Masters student, Laboratory of Human Movement, University of Caxias do Sul, RS, Brazil; Trainee, Laboratory of Human Movement, University of Caxias do Sul, RS, Brazil; Trainee, Sports Medicine Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil. ⁸Trainee, Laboratory of Human Movement, University of Caxias do Sul, RS, Brazil; Trainee, Sports Medicine Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil. ⁸Trainee, Laboratory of Human Movement, University of Caxias do Sul, Caxias do Sul, RS, Brazil; ⁹Associate Professor, Bergen University College, Institute of Physical Therapy, AHS, Bergen, Norway; ¹⁰Professor, Bergen, Norway; ¹⁰Professor, Section for Physical Therapy, AHS, Bergen, Norway. This study was approved by The Research Ethics Committee of the Vale do Parafba University. The authors affirm that we have no financial affiliation (including research funding) or involvement wit for drainage of fluids and metabolites. Unfortunately, the available studies have methodological limitations, such as the inclusion of untrained subjects, small numbers of participants, and the use of surrogate outcomes.^{3,26} These limitations hamper generalization of the available trial results.

Neuromuscular electrical stimulation is an intervention that has been tested in postexercise recovery for soccer³² and futsal³³ athletes. No significant differences were found for biochemical markers or performance outcomes after electrical stimulation compared to other interventions such as water and dry-land exercises and control (passive rest recovery) conditions. However, significant improvements were found for the subjective outcomes of pain reduction and perceived benefit with electrical stimulation.

Light amplification by stimulated emission of radiation (laser) was developed in the 1960s, using light with special properties like monochromaticity and low divergence.

Low-level laser therapy (LLLT) is the application of light (usually a low-power laser in the range of 1 to 500 mW) to a pathology. The light is typically of narrow spectral width in the red or near infrared spectrum (600-1000 nm), with a power density or irradiance (power output divided by laser spot area) between 1 mW and 5 W/cm².¹⁹ Infrared wavelengths penetrate better through the human skin than red wavelengths,^{12,13} and for this reason, lasers with infrared wavelengths are much more commonly used in physiotherapy clinical practice. One of the possible mechanisms behind the therapeutic effects of LLLT is the interaction of photons from laser irradiation at optimal doses (therapeutic window) with specific receptors in the mitochondria. It increases mitochondrial function, ATP, RNA, and protein synthesis. This interaction leads to increased oxygen consumption and membrane potential and enhanced synthesis of NADH and ATP. It consequently increases the cellular metabolism, possibly increasing the wound

healing and accelerating the inflammatory process.¹⁹

LLLT has become popular with physical therapists in some countries like Norway and Brazil. During the first wave of interest in the use of LLLT for therapeutic benefits in the late 1980s a limited number of clinical studies were performed with mixed outcomes.^{5,35} Controversy remained and leading medical experts expressed skepticism over the method during the 1990s.^{4,11} By the turn of the century, a renewed interest led to a slowly emerging research activity that identified several potential mechanisms of action^{9,38} and related dose-response patterns.⁶

Studies performed in animals have shown positive effects of LLLT in the form of inflammatory reduction and improvement in muscle repair when the optimal parameters of irradiation were used.^{1,8,24,31} Studies into the mechanisms behind these effects suggest that LLLT can decrease oxidative stress and reactive oxygen species production,^{2,27} improve mitochondrial function,37 and stimulate mitochondrial respiratory chain, ATP synthesis,29 and microcirculation.34 These effects provides the rationale for testing if LLLT can prevent the development of skeletal muscle fatigue and enhance recovery.

We have previously performed clinical studies with single-laser diode probes to test if LLLT could delay the development of skeletal muscle fatigue^{22,23} and increase muscle recovery,²¹ when applied before exercise. In these studies, LLLT decreased muscle fatigue and improved biochemical markers related to muscle recovery. However, our results were limited by the use of singlelaser diode probes, which limited the size of the area of irradiation. In contrast, cluster multidiode probes make it possible to irradiate several points at the same time. This could increase the effects of LLLT, especially when large areas need to be irradiated such as skeletal muscles.

With this perspective in mind, we

investigated whether LLLT, performed with a cluster multidiode probe over the biceps pre-exercise, would increase the number of submaximal repetitions of elbow flexion performed before exhaustion and reduce the level of the biochemical markers related to skeletal muscle recovery in top-level athletes.

METHODS

HE STUDY WAS DESIGNED AS A crossover, randomized, doubleblinded, placebo-controlled trial. All subjects signed a written declaration of informed consent and their rights were protected. The volunteers were recruited among male volleyball players (n = 9) of a single team competing at the highest national competitive level. The protocol for this study was approved by Vale do Paraiba University Research Ethics Committee.

Randomization and Blinding Procedures

Randomization was performed by a simple drawing of a card, which determined whether active LLLT or placebo LLLT should be given at the first exercise session. At the second session participants were crossed over to receive whichever treatment was not given at the first session. The code from the drawing was delivered to a technician who preset the treatment unit accordingly to either an active LLLT or placebo LLLT mode. The technician was also instructed not to communicate the type of treatment given to either the participants, the therapist applying the laser treatment to the biceps, or the observers. Thus the allocation of treatment was concealed to participants, therapist, and observers. Blinding of participants and the therapist was further maintained by the use of opaque goggles during LLLT procedures. The goggles also served to protect the eves from LLLT irradiation.

Inclusion/Exclusion Criteria

Healthy male volleyball players, aged between 18 and 20 years, who had been

RESEARCH REPORT]

playing volleyball at the national level for at least the past 3 years, were included in the study. Exclusion criteria consisted of any previous musculoskeletal injury to the shoulder or elbow region, participation in less than 80% of the scheduled team physical training and volleyball sessions for the previous 3 months, and the use of any kind of nutritional supplements or pharmacological agents.

Nine athletes met the inclusion and exclusion criteria and were included in the trial (**FIGURE 1**).

Procedures

To provide a standard testing condition for the elbow, we used a Scott exercise bench, with an inclination angle of 45° . For the measurements of irradiation time and total time of repetitions, a Casio chronometer precise to 1/100 of a second was used.

Maximum Voluntary Contraction (MVC) Test Athletes were familiarized to the performance of elbow flexion-extension exercises (nondominant arm) with an adaptation period of 2 weeks. This consisted of performing 3 sets of 15 repetitions with a load equal to 7.5% of the athletes' body weight during the team's regular strength training sessions (3 times per week). After 2 weeks of familiarization with the exercise, we performed an MVC test (or 1-repetition maximum test) that consisted of establishing the largest load that could be lifted for a single repetition of elbow flexion from full extension to 90° of flexion for the nondominant elbow. The test was performed with the subject seated on a Scott bench (to control positioning and provide stabilization). Free weights (dumbbells) were used. After determining the MVC, the specific individual weight (load) corresponding to 75% of MVC was calculated for each subject.

Period of Evaluation Care was taken to standardize the exercise protocols and testing sessions. Exercises were performed in a standardized sitting position, and testing was performed in 2 separate sessions 7 days apart, such that both ses-

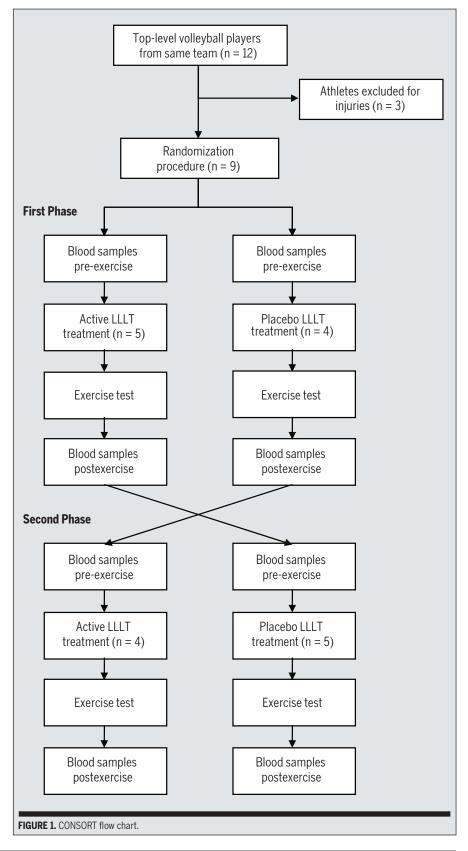


FIGURE 2. Volleyball athlete performing exercise protocol.

FIGURE 3. Low-level laser therapy treatment in skin contact over the biceps muscle with the patient lying in the supine position.

sions were performed on the same day of the week (Monday) and the same time of day (between 4:30 and 8:30 PM). The first testing session was performed 2 days after the MVC test. High-level physical activity, such as game matches, strength training, or volleyball training sessions, was not allowed in the weekend before testing.

Fatigue Protocol At the beginning of each testing session, baseline blood measurements were obtained for each subject from the ventral side of the nondominant arm. This was immediately followed by a series of muscle-stretching exercises involving all the major muscles of the nondominant arm (2 repetitions of 60 seconds for each muscle group), finishing with the flexor muscles of the nondominant elbow. Then the subject was seated on the Scott bench, with the knees and hips flexed at 90°. Using free weights, the previously defined individual load corresponding to 75% of MVC was used for each subject. Using their nondominant arm, the subjects were instructed to perform repeated elbow flex-

TABLE 1	Parameters for Cluster Low-Level Laser Therapy		
Number of laser diodes	5		
Wavelength	810 nm (infrared)		
Frequency	Continuous output		
Optical output	200 mW each diode (total of 1000 mW)		
Spot size	0.0364 cm ² each spot		
Power density	5.495 W/cm ² (for each laser spot)		
Energy density	164.85 J/cm ² (for each laser spot)		
Energy	30 J on each point (6 J from each spot)		
Treatment time	30 s on each point (60 s of total treatment time)		
Number of irradiation points per muscle	2		
Total energy delivered per muscle	60 J		
Application mode	Cluster probe held stationary in skin contact with a 90° angle and slight pressure		

ion-extension from full elbow extension to 90° of flexion at maximal speed. A goniometer was fixed to the Scott bench to monitor the elbow flexion angle. The number of repetitions performed until fatigue was counted by 1 observer, and the total time to fatigue was measured by a second observer (FIGURE 2). The exercise protocol was considered complete when the subject did not reach the elbow flexion of 90°. During the execution of exercise protocol, the subjects received verbal encouragement provided by the observer who measured time to fatigue. LLLT Procedure At each testing session, the participants either received a single treatment of active cluster LLLT or placebo cluster LLLT, both using a cluster with 5 laser diodes of 810 nm (THOR Photomedicine Ltd, Chesham, UK). The treatment sequence was randomized. The active or placebo LLLT was administered immediately after the stretching exercises and 3 minutes before the exercise fatigue test. Two irradiation sites evenly distributed in the middle of the ventral aspect of the biceps muscle (nondominant arm) were selected (FIGURE 3).

The LLLT irradiation was performed with the probe in direct contact with the skin, applying slight pressure, and with the probe held stationary oriented perpendicular to the skin. The parameters for the cluster probe LLLT (active and placebo) are summarized in TABLE 1.

After application of the active or placebo LLLT, participants were immediately repositioned, then started to perform the repeated-elbow-flexion protocol. The interval between application of the active or placebo LLLT and starting the testing was 180 seconds.

Blood Samples

Possible muscle damage and inflammatory response were indirectly measured by creatine kinase (CK) activity and Creactive protein (CRP) levels, respectively. To measure those parameters, a qualified nurse blinded to group allocation performed aseptic cleaning of the ventral side of the nondominant arm and took 1 blood sample before the stretching and laser or placebo treatments and another blood sample exactly 5 minutes after the exercises were completed. The samples were frozen, and blood analysis for CK was performed 1 week later using an infrared spectrophotometer (FEMTO Indústria e Comércio de Instrumentos, São Paulo, SP, Brazil) and specific analysis kit (Labtest Diagnostica SA, Lagoa Santa, Brazil). The analysis of CRP was also performed at that time by the agglutination method using a specific analysis kit (Wiener Laboratorios SAIC, Rosario, Argentina). All blood analyses were performed by an observer who was

RESEARCH REPORT

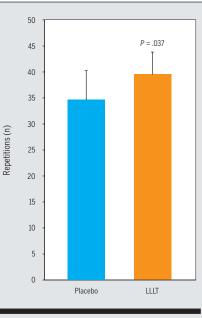
Abbreviation: LLLT, low-level laser therapy.

* No significant difference between subjects who had active LLLT at the first session versus the second session (P = .8033, unpaired t tests). No significant difference between subjects who had placebo LLLT at the first session versus the second session (P = .4962, unpaired t tests).

TABLE 3 Time to Perform the Resisted Elbow Flexion Exercise to Fatigue*					
Subject	Active LLLT Exercise Session 1	Placebo LLLT Exercise Session 2	Subject	Placebo LLLT Exercise Session 1	Active LLLT Exercise Session 2
A	39.8	35.9	F	40.9	44.5
В	35.0	36.1	G	36.5	46.0
С	33.1	36.1	Н	34.4	39.4
D	47.5	43.5	1	38.8	40.6
E	45.8	41.8			
$\text{Mean} \pm \text{SD}$	40.2 ± 6.4	38.7 ± 3.7	$\text{Mean} \pm \text{SD}$	37.6 ± 2.8	42.6 ± 3.2

Abbreviation: LLLT, low-level laser therapy.

* No significant difference between subjects who had active LLLT at the first session versus the second session (P = .5180, unpaired t tests). No significant difference between subjects who had placebo LLLT at the first session versus the second session (P = .6501, unpaired t tests).

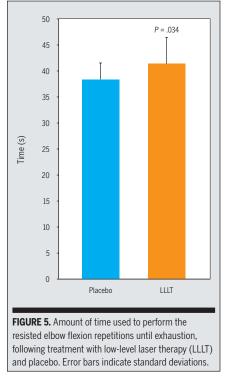

blinded to the laser or placebo treatment allocations.

Blood Samples for Blood Lactate Analysis

To measure blood lactate concentrations, we took blood samples after aseptic cleaning of the second finger of the nondominant arm. The procedure was performed by a qualified nurse (blinded to group allocation), who took 1 sample before stretching and laser or placebo treatments, and additional samples at 5, 10, 15, and 20 minutes after the exercises were completed. The Accu-Chek Soft Clix lancets were used, and the samples were immediately analyzed with the portable Accutrend Lactate analyzer. The observer that performed the blood lactate analyses was also blinded to the laser or placebo treatment allocations.

Statistical Analysis

Group means and their respective standard deviations were used for statistical analysis. To analyze if a carryover effect occurred between the 2 exercise sessions, a 2-sided unpaired t test was used to compare the number of resisted elbow flexion repetitions performed and the time to perform these repetitions. A 2-sided paired t test was used to test if there

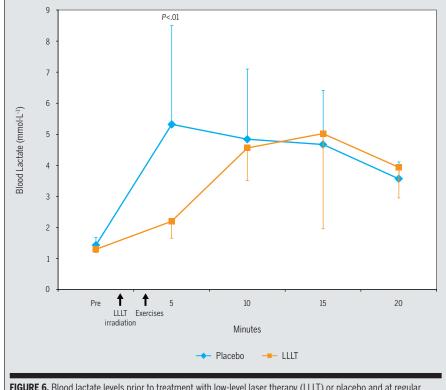

FIGURE 4. Number of resisted elbow flexion repetitions performed until exhaustion following treatment with low-level laser therapy (LLLT) and placebo. Error bars indicate standard deviations.

was a significant difference for the number of resisted elbow flexion repetitions performed, time used to perform these repetitions, CK activity, and CRP levels between treatment using the active cluster LLLT and the placebo LLLT. A mixeddesign analysis of variance (ANOVA) with Tukey-Kramer posttest was used to determine if there was a significant difference in blood lactate levels between treatment using the active cluster LLLT and placebo cluster LLLT. All statistical analyses were performed using GraphPad InStat Version 3.00 for Windows (GraphPad Software, San Diego, CA). The significance level was set at P < .05.

RESULTS

INE HEALTHY MALE VOLLEYBALL players were recruited, who met the inclusion criteria. Their average age \pm SD was 18.6 \pm 1.0 years, their body mass 83.6 \pm 5.60 kg, and their height 193.3 \pm 8.8 cm.

In the analyses of possible crossover and unintended learning effects between testing sessions, the number of elbow flex-


ion repetitions performed, and time to perform these repetitions were not affected (P>.05) by whether active LLLT was given at the first or last session (TABLES 2 and 3).

The mean number of resisted elbow flexion repetitions performed was 14.5% higher (mean \pm SD, 39.6 \pm 4.3 repetitions) when the volunteers received the active LLLT treatment before the exercise fatigue tests, compared to when they received the placebo LLLT (34.6 \pm 5.6 repetitions, *P* = .037) (**FIGURE 4**).

The mean \pm SD amount of time to perform the resisted elbow flexion exercise test was 8.0% longer after treatment with the active LLLT (41.3 \pm 5.1 seconds) than after treatment with placebo LLLT (38.2 \pm 3.2 seconds; *P* = .034) (**FIGURE 5**).

The subjects presented with similar blood lactate levels prior to laser (1.3 \pm 0.1 mmol·L⁻¹) and placebo (1.4 \pm 0.2 mmol·L⁻¹) treatment (*P*>.05).

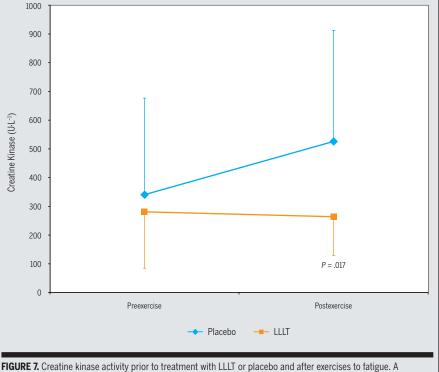
The blood lactate levels increased in both groups from baseline assessments to postexercise assessments. There was a significant difference between the groups at 5 minutes postexercise (active LLLT, $2.2 \pm 0.5 \text{ mmol}\cdot\text{L}^{-1}$; placebo LLLT, $5.3 \pm$

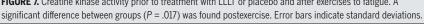
FIGURE 6. Blood lactate levels prior to treatment with low-level laser therapy (LLLT) or placebo and at regular 5-minute intervals following the exercises to fatigue. A significant difference between groups (P<.01) was found at 5 minutes postexercise.

3.2 mmol·L⁻¹; P<.01). However, no significant differences in blood lactate levels were found between groups at 10, 15, or 20 minutes postexercise (**FIGURE 6**).

CK activity before the exercise test was similar between groups (active LLLT, 281.0 \pm 196.3 U·L⁻¹; placebo LLLT, 340.6 \pm 335.6 U·L⁻¹; *P*>.05). Postexercise CK activity was reduced after treatment with active LLLT (263.6 \pm 134.2 U·L⁻¹) while it increased after treatment with placebo LLLT (525.7 \pm 386.5 U·L⁻¹). This difference between treatments was significant (*P* = .017) (**FIGURE 7**).

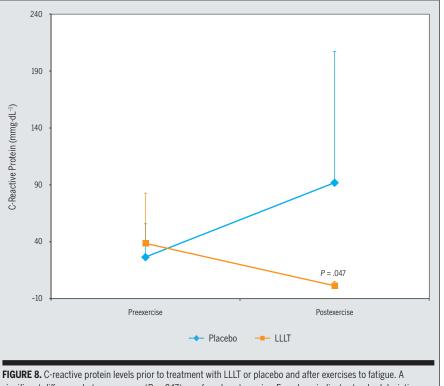
CRP levels before the exercise test were similar between groups (active LLLT, 38.7 \pm 44.0 mg·dL⁻¹; placebo LLLT, 26.7 \pm 29.3 mg·dL⁻¹; *P*>.05). Postexercise CRP levels decreased after treatment with active LLLT (1.3 \pm 4.0 mg·dL⁻¹), while it increased after treatment with placebo LLLT (92.0 \pm 115.1 mg·dL⁻¹). This difference between treatments was significant (*P* = .047) (**FIGURE 8**).


DISCUSSION


N THIS STUDY, WE EVALUATED IF THE use of LLLT could affect the development of skeletal muscle fatigue and biochemical markers of skeletal muscle recovery. A robust study design was used, with all subjects receiving the active and the placebo treatment on 2 separate occasions and all investigators and subjects being blinded to the treatment received on each occasion. All procedures were also rigorously followed. The similarity of the group data at baseline prior to the 2 treatment options, along with the absence of a treatment order/learning effect, provides confidence in the results of this study.

Irradiation of the biceps muscle with active LLLT prior to repeated resisted elbow flexion significantly increased the number of repetitions before exhaustion, when compared to irradiation with placebo LLLT. Accordingly, increased

RESEARCH REPORT


time to exhaustion was observed for the condition where active LLLT was administered. We were unable to identify studies using other physical modalities where treatment applied prior to the exercise enhanced physical performance. However, there is an important limitation to our findings. To tightly control the experiment, a single muscle group was involved in the fatiguing task. Thus, the results cannot be generalized as applicable to more complex sport activities. While previous studies²¹ have used LLLT for complex tasks, such as cycling, they have failed to demonstrate any performance-enhancing effects.

Blood lactate concentration is widely used to monitor performance and recovery, and it is also a surrogate marker of recovery after exercise. Our findings indicate that treating the area with LLLT prior to the exercise reduces postexercise blood lactate levels at 5 minutes after exercise and possibly has a positive influence on recovery. Commonly used modalities to help recovery, such as massage,18 cryotherapy (cold-water immersion),17 and electrical stimulation30 have failed to significantly enhance blood lactate removal. Positive effects in blood lactate removal have been demonstrated after hot-cold baths but only in nonathletes.26 A reduction of postexercise blood lactate levels is desirable, because high lactate levels decrease the interstitial H⁺ concentration and intracellular pH, leading to acidosis.¹⁴ Acidification of the neuromuscular junction may impair the neuromuscular transmission and, consequently, muscle contractions. In addition, some studies have indicated that high H+ concentrations can inhibit the linking of Ca⁺² to troponin and thereby inhibit the interaction between contractile proteins.10

Dose and treatment procedure seem to be important to achieve positive effects of LLLT in muscle tissue. In previous studies we had irradiated the biceps muscle at 4 locations using a single-diode laser but failed to find significant differences in blood lactate levels compared to controls.^{22,23} In the current protocol, we aimed at improving the LLLT treatment procedure. For this reason we treated a larger area using an applicator with 5 laser diodes and applied irradiation in 2 locations of the muscle belly. It is possible that 4 irradiation points, as used in previous studies, might have been insufficient to cover the biceps muscle and that increasing the treatment area to a total of 10 irradiation points, as done in this study, was the source of difference between the trials. Treatment dosage warrants attention in future studies, as it is possibly an important variable for LLLT administration. Because of the poor skin penetration ability of the lasers,12 a single diode will only cover a small area (2-3 cm²). Some authors have tried without success to overcome the poor distribution of laser light by introducing scanning laser devices.16 Nearly all basic science studies on LLLT have been performed with stationary treatment,7 and the general interpretation of published data suggest that LLLT is not effective if the laser source is not kept stationary over the same location for at least 20 to 30 seconds.

CK activity after exercise was significantly decreased in subjects who received the active LLLT. This result, together with the concurrent decrease in CRP levels, indicates a possible protective effect against exercise-induced muscle damage. These findings are consistent with a number of animal studies in which LLLT was found to reduce inflammation induced by inflammatory agents or trauma.^{7,13}

Surprisingly, CRP levels and CK activity were significantly lower after the exercises when compared to their pre-exercise values, after receiving the LLLT treatment. The decrease in CK activity and CRP levels after active LLLT could be related to a laser-protective effect in the development of muscle ischemia. There are some indications that LLLT can reduce reactive oxygen species release and creatine phosphokinase activity, while levels of antioxidants and heat shock proteins increase.^{2,27} In a muscle cell study, LLLT improved mitochondrial function and reversed a dysfunctional state induced by electrical stimulation.³⁷ Previ-

significant difference between groups (P = .047) was found postexercise. Error bars indicate standard deviations.

ous studies have also demonstrated that LLLT can stimulate the mitochondrial respiratory chain and ATP synthesis.20,29 Such effects could, in turn, contribute to a decrease in CK activity, CRP levels, and also the delay in development of fatigue seen in the current study. Some evidence suggests that other therapies such as massage³⁹ and hot-cold water baths¹⁵ may prevent muscle damage after exercise. But cryotherapy (cold water immersion) did not decrease postexercise levels of biochemical markers of muscle damage or inflammation in previous studies.17,28

In the management of muscle recovery among athletes, a multitude of interventions are commonly used, despite limited evidence to support their effectiveness. This current study builds on several earlier studies using LLLT performed on animals and humans. In earlier studies we first tried to elucidate the mechanisms involved in LLLT irradiation and their respective dose-response patterns.25 We used this knowledge to develop an LLLT treatment procedure

that seemed optimal, which was the one tested in this latest study. But several questions remain unanswered, such as when to irradiate for best results and whether LLLT can improve subsequent performances when repeated participation is needed. LLLT dose recommendations have already been developed by the World Association of Laser Therapy36 for the treatment of tendons and joints. The World Association of Laser Therapy also recommends that doses in clinical studies should be calculated in Joules (J) only. Our dose measured in J/cm² may seem larger than doses used in other studies, but this is due to the very small spot size for the laser we used. Small spot sizes inflate the J/cm² dosage calculations and cause confusion. In humans, the target tissue is typically much larger than the laser spot size. The reasoning behind World Association of Laser Therapy guidelines is that it is incorrect to state clinical doses in J/cm² when only a small part of the surface of the target tissue is being irradiated. Consequently, the J/cm²

should be limited to cell and animal studies, in which the target area can be fully covered. The main parameter for clinical doses in human studies should be Joules. More studies are needed to define the therapeutic window for muscle fatigue and damage, as well as muscle recovery.

CONCLUSIONS

dose of LLLT (λ = 810 nm, 200 mW, 30 seconds, 164.85 J/cm², 6 J per point), administered to each of 10 treatment areas over the biceps muscle, significantly delayed the development of muscle fatigue during a task of repetitive resisted elbow flexion. This finding was consistent with observed changes in biochemical markers related to skeletal muscle recovery. This suggests that LLLT may have a protective effect on the development of muscle ischemia and exerciseinduced muscle damage. Further studies are needed to find the optimal timing of LLLT irradiation for recovery, and if LLLT can improve physical performance during recovery or reduce the recovery period. •

KEY POINTS

FINDINGS: This study showed that LLLT delayed the development of skeletal muscle fatigue and concurrently decreased postexercise levels of biochemical markers of muscle recovery. **IMPLICATION:** These findings suggest that LLLT applied pre-exercise may be helpful to delay fatigue during a repetitive task and possibly help recovery. **CAUTION:** The design of the experimental procedure using a single muscle group also has limitations, and the observed LLLT effects may not translate into more complex sporting activities involving several muscles.

ACKNOWLEDGEMENTS: The authors would like to thank Luciana Maria Machado. Mariéli Turcatti, and Graziela Albeche Gomes for the assistance with the blood samples, the athletes whom participated of the study, the volleyball team coaches, and Fundo de Apoio a Pesquisa - FAP/UNINOVE for financial support.

RESEARCH REPORT]

REFERENCES

- Albertini R, Villaverde AB, Aimbire F, et al. Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. *Photomed Laser Surg.* 2008;26:19-24. http://dx.doi.org/10.1089/pho.2007.2119
- Avni D, Levkovitz S, Maltz L, Oron U. Protection of skeletal muscles from ischemic injury: lowlevel laser therapy increases antioxidant activity. *Photomed Laser Surg.* 2005;23:273-277. http:// dx.doi.org/10.1089/pho.2005.23.273
- Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36:781-796.
- Basford JR. Low intensity laser therapy: still not an established clinical tool. *Lasers Surg Med*. 1995;16:331-342.
- Basford JR, Sheffield CG, Mair SD, Ilstrup DM. Lowenergy helium neon laser treatment of thumb osteoarthritis. Arch Phys Med Rehabil. 1987;68:794-797.
- Bjordal JM, Couppe C, Ljunggren AE. Low level laser therapy for tendinopathy: evidence of a dose-response pattern. *Phys Ther Rev.* 2001;6:91-99.
- Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA. Photoradiation in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. *Photomed Laser Surg.* 2006;24:158-168. http://dx.doi.org/10.1089/ pho.2006.24.158
- Bortone F, Santos HA, Albertini R, Pesquero JB, Costa MS, Silva JA, Jr. Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. *Int Immunopharmacol*. 2008;8:206-210. http://dx.doi. org/10.1016/j.intimp.2007.09.004
- Campana V, Moya M, Gavotto A, et al. The relative effects of HeNe laser and meloxicam on experimentally induced inflammation. *Laser Therapy*. 1999;11:36-41.
- Chin ER, Allen DG. The contribution of pHdependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol. 1998;512 (Pt 3):831-840.
- **11.** Devor M. What's in a laser beam for pain therapy? *Pain*. 1990;43:139.
- **12.** Enwemeka CS. Attenuation and penetration of visible 632.8nm and invisible infra-red 904nm light in soft tissues. *Laser Therapy*. 2001;13:95-101.
- Enwerneka CS. Intricacies of dose in laser phototherapy for tissue repair and pain relief. *Photomed Laser Surg.* 2009;27:387-393. http:// dx.doi.org/10.1089/pho.2009.2503
- Foss ML, Keteyian SJ. FOX's Physiological Basis for Exercise and Sport. 6th ed. Boston, MA: McGraw-Hill; 1998.
- **15.** Gill ND, Beaven CM, Cook C. Effectiveness of post-match recovery strategies in rugby play-

ers. Br J Sports Med. 2006;40:260-263. http:// dx.doi.org/10.1136/bjsm.2005.022483

- Gorgey AS, Wadee AN, Sobhi NN. The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. *Photomed Laser Surg.* 2008;26:501-506. http://dx.doi. org/10.1089/pho.2007.2161
- Halson SL, Quod MJ, Martin DT, Gardner AS, Ebert TR, Laursen PB. Physiological responses to cold water immersion following cycling in the heat. *Int J Sports Physiol Perform*. 2008;3:331-346.
- 18. Hinds T, McEwan I, Perkes J, Dawson E, Ball D, George K. Effects of massage on limb and skin blood flow after quadriceps exercise. *Med Sci Sports Exerc.* 2004;36:1308-1313.
- Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. *Dose Response*. 2009;7:358-383. http://dx.doi. org/10.2203/dose-response.09-027.Hamblin
- Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. *Photochem Photobiol*. 2008;84:1091-1099. http://dx.doi. org/10.1111/j.1751-1097.2008.00394.x
- 21. Leal Junior EC, Lopes-Martins RA, Baroni BM, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. *Lasers Med Sci.* 2009;24:857-863. http://dx.doi.org/10.1007/ s10103-008-0633-4
- 22. Leal Junior EC, Lopes-Martins RA, Dalan F, et al. Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. *Photomed Laser Surg.* 2008;26:419-424. http://dx.doi.org/10.1089/pho.2007.2160
- 23. Leal Junior EC, Lopes-Martins RA, Vanin AA, et al. Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci. 2009;24:425-431. http:// dx.doi.org/10.1007/s10103-008-0592-9
- 24. Liu XG, Zhou YJ, Liu TC, Yuan JQ. Effects of lowlevel laser irradiation on rat skeletal muscle injury after eccentric exercise. *Photomed Laser Surg.* 2009;27:863-869. http://dx.doi. org/10.1089/pho.2008.2443
- 25. Lopes-Martins RA, Marcos RL, Leonardo PS, et al. Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol. 2006;101:283-288. http://dx.doi.org/10.1152/ japplphysiol.01318.2005
- Morton RH. Contrast water immersion hastens plasma lactate decrease after intense anaerobic exercise. J Sci Med Sport. 2007;10:467-470. http://dx.doi.org/10.1016/j.jsams.2006.09.004
- 27. Rizzi CF, Mauriz JL, Freitas Correa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. *Lasers Surg Med*. 2006;38:704-713. http://dx.doi.org/10.1002/lsm.20371
- 28. Rowsell GJ, Coutts AJ, Reaburn P, Hill-Haas S. Effects of cold-water immersion on physical performance between successive matches in

high-performance junior male soccer players. *J Sports Sci.* 2009;27:565-573. http://dx.doi. org/10.1080/02640410802603855

- 29. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95:89-92. http://dx.doi.org/10.1016/j. jphotobiol.2009.01.004
- 30. So RC, Ng JK, Ng GY. Effect of transcutaneous electrical acupoint stimulation on fatigue recovery of the quadriceps. *Eur J Appl Physiol*. 2007;100:693-700. http://dx.doi.org/10.1007/ s00421-007-0463-2
- **31.** Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM. Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. *Lasers Med Sci.* 25:115-120. http://dx.doi. org/10.1007/s10103-009-0697-9
- 32. Tessitore A, Meeusen R, Cortis C, Capranica L. Effects of different recovery interventions on anaerobic performances following preseason soccer training. J Strength Cond Res. 2007;21:745-750. http://dx.doi. org/10.1519/R-20386.1
- 33. Tessitore A, Meeusen R, Pagano R, Benvenuti C, Tiberi M, Capranica L. Effectiveness of active versus passive recovery strategies after futsal games. J Strength Cond Res. 2008;22:1402-1412. http://dx.doi.org/10.1519/JSC.0b013e31817396ac
- **34.** Tullberg M, Alstergren PJ, Ernberg MM. Effects of low-power laser exposure on masseter muscle pain and microcirculation. *Pain*. 2003;105:89-96.
- Walker JB, Akhanjee LK, Cooney MM, Goldstein J, Tamayoshi S, Segal-Gidan F. Laser therapy for pain of rheumatoid arthritis. *Clin J Pain*. 1987;3:54-59.
- 36. World Association for Laser Therapy (WALT). Dosage Recommendations and Scientific Guidelines. Available at: http://www.walt.nu/dosagerecommendations-and-scientific-guidelines. html. Accessed March 15, 2010.
- 37. Xu X, Zhao X, Liu TC, Pan H. Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. *Photomed Laser Surg.* 2008;26:197-202. http:// dx.doi.org/10.1089/pho.2007.2125
- 38. Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. *Photochem Photobiol*. 1997;66:866-871.
- 39. Zainuddin Z, Newton M, Sacco P, Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train. 2005;40:174-180.

This article has been cited by:

- 1. Cláudia de Souza Oliveira, Helenita Antonia de Oliveira, Ighor Luiz Azevedo Teixeira, Ednei Luiz Antonio, Flavio Andre Silva, Simone Sunemi, Ernesto Cesar Leal-Junior, Paulo de Tarso Camillo de Carvalho, Paulo José Ferreira Tucci, Andrey Jorge Serra. 2020. Low-level laser therapy prevents muscle apoptosis induced by a high-intensity resistance exercise in a dose-dependent manner. *Lasers in Medical Science* 33. [Crossref]
- 2. Marcele Florêncio das Neves, Diane Cristina Aleixo, Izabela Santos Mendes, Fernanda Púpio Silva Lima, Renata Amadei Nicolau, Emilia Angela Loschiavo Arisawa, Rodrigo Alvaro Brandão Lopes-Martins, Mário Oliveira Lima. 2019. Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808 nm): a double-blinded placebo-controlled clinical trial. *Lasers in Medical Science* 11. [Crossref]
- 3. Ewa Jówko, Maciej Płaszewski, Maciej Cieśliński, Tomasz Sacewicz, Igor Cieśliński, Marta Jarocka. 2019. The effect of low level laser irradiation on oxidative stress, muscle damage and function following neuromuscular electrical stimulation. A double blind, randomised, crossover trial. *BMC Sports Science, Medicine and Rehabilitation* 11:1. [Crossref]
- 4. Heliodora Leão Casalechi, Arislander Jonathan Lopes Dumont, Luiz Alfredo Braun Ferreira, Paulo Roberto Vicente de Paiva, Caroline dos Santos Monteiro Machado, Paulo de Tarso Camillo de Carvalho, Claudia Santos Oliveira, Ernesto Cesar Pinto Leal-Junior. 2019. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial. *Lasers in Medical Science* 30. . [Crossref]
- 5. Dongmei Wang, Xingtong Wang. 2019. Efficacy of laser therapy for exercise-induced fatigue. *Medicine* **98**:38, e17201. [Crossref]
- 6. Maurício Pinto Dornelles, Carolina Gassen Fritsch, Francesca Chaida Sonda, Douglas Scott Johnson, Ernesto Cesar Pinto Leal-Junior, Marco Aurélio Vaz, Bruno Manfredini Baroni. 2019. Photobiomodulation therapy as a tool to prevent hamstring strain injuries by reducing soccer-induced fatigue on hamstring muscles. *Lasers in Medical Science* 34:6, 1177-1184. [Crossref]
- 7. Ernesto Cesar Pinto Leal-Junior, Shaiane da Silva Tomazoni. Synergistic effects of combination of three wavelengths and different light sources in cytochrome c oxidase activity in intact skeletal muscle of rats 50. [Crossref]
- 8. Brian Closs, Connor Burkett, Jeffrey D. Trojan, Symone M. Brown, Mary K. Mulcahey. 2019. Recovery after volleyball: a narrative review. *The Physician and Sportsmedicine* 22, 1-9. [Crossref]
- Ranieli Cavalcante dos Santos, Katiana Walécia Holanda S. Souza Guedes, Juliana Maria de Sousa Pinto, Mayron F. Oliveira. 2019. Acute low-level laser therapy effects on peripheral muscle strength and resistance in patients with fibromyalgia. *Lasers in Medical Science* 65. [Crossref]
- 10. Eduardo Foschini Miranda, Welton Alves Diniz, Marcos Vinicius Nogueira Gomes, Marcelo Ferreira Duarte de Oliveira, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2019. Acute effects of photobiomodulation therapy (PBMT) combining laser diodes, light-emitting diodes, and magnetic field in exercise capacity assessed by 6MST in patients with COPD: a crossover, randomized, and triple-blinded clinical trial. *Lasers in Medical Science* 34:4, 711-719. [Crossref]
- 11. Julio Calleja-Gonzalez, Juan Mielgo-Ayuso, Braulio Sanchez-Ureña, Sergej M. Ostojic, Nicolas Terrados. 2019. Recovery in volleyball. *The Journal of Sports Medicine and Physical Fitness* 59:6. [Crossref]
- 12. Carolina Gassen Fritsch, Laura Ayang Folgiarini, Natália Sgarioni Gomes, Marco Aurélio Vaz, Bruno Manfredini Baroni. 2019. Are the ergogenic effects of photobiomodulation therapy age-dependent? A randomized double-blinded placebocontrolled trial. *Lasers in Medical Science* 101. [Crossref]
- Nicolas Terrados, Juan Mielgo-Ayuso, Anne Delextrat, Sergej M. Ostojic, Julio Calleja-Gonzalez. 2019. Dieteticnutritional, physical and physiological recovery methods post-competition in team sports. *The Journal of Sports Medicine* and Physical Fitness 59:3. [Crossref]
- 14. Thiago De Marchi, Ernesto Cesar Pinto Leal-Junior, Kalvin Comin Lando, Fabiane Cimadon, Adriane Aver Vanin, Darlan Pase da Rosa, Mirian Salvador. 2019. Photobiomodulation therapy before futsal matches improves the staying time of athletes in the court and accelerates post-exercise recovery. *Lasers in Medical Science* 34:1, 139-148. [Crossref]
- 15. Kamila V.S.G. Vieira, Marcia A. Ciol, Paulo H. Azevedo, Carlos E. Pinfildi, Ana C.M. Renno, Emilson Colantonio, Helga T. Tucci. 2019. Effects of Light-Emitting Diode Therapy on the Performance of Biceps Brachii Muscle of Young Healthy Males After 8 Weeks of Strength Training. *Journal of Strength and Conditioning Research* 33:2, 433-442. [Crossref]

- 16. Ernesto Cesar Pinto Leal-Junior, Rodrigo Álvaro Brandão Lopes-Martins, Jan Magnus Bjordal. 2019. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. *Brazilian Journal of Physical Therapy* 23:1, 71-75. [Crossref]
- 17. Justin H. Rigby, Austin M. Hagan. 2019. A Novel Blue–Red Photobiomodulation Therapy Patch Effects on a Repetitive Elbow-Flexion Fatigue Task. *Journal of Sport Rehabilitation* 1-6. [Crossref]
- 18. Shaiane Silva Tomazoni, Caroline dos Santos Monteiro Machado, Thiago De Marchi, Heliodora Leão Casalechi, Jan Magnus Bjordal, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2019. Infrared Low-Level Laser Therapy (Photobiomodulation Therapy) before Intense Progressive Running Test of High-Level Soccer Players: Effects on Functional, Muscle Damage, Inflammatory, and Oxidative Stress Markers—A Randomized Controlled Trial. Oxidative Medicine and Cellular Longevity 2019, 1. [Crossref]
- Vanessa Mouffron Novaes Alves, Renata Maria Moreira Moraes Furlan, Andréa Rodrigues Motta. 2019. Immediate effects of photobiomodulation with low-level laser therapy on muscle performance: an integrative literature review. *Revista CEFAC* 21:4. [Crossref]
- 20. Randa Zein, Wayne Selting, Michael R. Hamblin. 2018. Review of light parameters and photobiomodulation efficacy: dive into complexity. *Journal of Biomedical Optics* 23:12, 1. [Crossref]
- 21. Marcelo Frigero, Solange Almeida dos Santos, Andrey Jorge Serra, Caroline dos Santos Monteiro Machado, Leslie Andrews Portes, Paulo José Ferreira Tucci, Flavio Silva, Ernesto Cesar Leal-Junior, Paulo de Tarso Camillo de Carvalho. 2018. Effect of photobiomodulation therapy on oxidative stress markers of gastrocnemius muscle of diabetic rats subjected to high-intensity exercise. *Lasers in Medical Science* 33:8, 1781-1790. [Crossref]
- 22. Helenita Antonia de Oliveira, Ednei Luiz Antonio, Flávio André Silva, Paulo de Tarso Camillo de Carvalho, Regiane Feliciano, Amanda Yoshizaki, Stella de Souza Vieira, Brunno Lemes de Melo, Ernesto Cesar Pinto Leal-Junior, Rodrigo Labat, Danilo Sales Bocalini, José Antonio Silva Junior, Paulo José Ferreira Tucci, Andrey Jorge Serra. 2018. Protective effects of photobiomodulation against resistance exercise-induced muscle damage and inflammation in rats. *Journal of Sports Sciences* 36:20, 2349-2357. [Crossref]
- Luciano Ramos, Rodrigo Labat Marcos, Romildo Torres-Silva, Rodney Capp Pallota, Tatiana Magacho, Fernando Francisco Pazello Mafra, Michel Monteiro Macedo, Rodrigo Leal de Paiva Carvalho, Jan Magnus Bjordal, Rodrigo Alvaro B. Lopes-Martins. 2018. Characterization of Skeletal Muscle Strain Lesion Induced by Stretching in Rats: Effects of Laser Photobiomodulation. *Photomedicine and Laser Surgery* 36:9, 460-467. [Crossref]
- Fábio J. Lanferdini, Renata L. Krüger, Bruno M. Baroni, Caetano Lazzari, Pedro Figueiredo, Alvaro Reischak-Oliveira, Marco A. Vaz. 2018. Low-level laser therapy improves the VO2 kinetics in competitive cyclists. *Lasers in Medical Science* 33:3, 453-460. [Crossref]
- 25. Adalberto Ferreira Junior, Julio Cezar Schamne, Solange Marta Franzói de Moraes, Nilo Massaru Okuno. 2018. Cardiac autonomic responses and number of repetitions maximum after LED irradiation in the ipsilateral and contralateral lower limb. *Lasers in Medical Science* 33:2, 353-359. [Crossref]
- 26. Adriane Aver Vanin, Evert Verhagen, Saulo Delfino Barboza, Leonardo Oliveira Pena Costa, Ernesto Cesar Pinto Leal-Junior. 2018. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. *Lasers in Medical Science* 33:1, 181-214. [Crossref]
- 27. Michael R. Hamblin. Photodynamic Therapy and Photobiomodulation: Can All Diseases be Treated with Light? 100-135. [Crossref]
- Fábio J. Lanferdini, Rodrigo R. Bini, Bruno M. Baroni, Kelli D. Klein, Felipe P. Carpes, Marco A. Vaz. 2018. Improvement of Performance and Reduction of Fatigue With Low-Level Laser Therapy in Competitive Cyclists. *International Journal* of Sports Physiology and Performance 13:1, 14-22. [Crossref]
- 29. Mitsuyoshi Murayama. 2018. Effect of Low Reactive-Level Laser Therapy or Light-Emitting Diode Therapy on Muscle Fatigue Resistance. *Nippon Laser Igakkaishi* 38:4, 432-438. [Crossref]
- 30. Shaiane Silva Tomazoni, Lúcio Frigo, Tereza Cristina dos Reis Ferreira, Heliodora Leão Casalechi, Simone Teixeira, Patrícia de Almeida, Marcelo Nicolas Muscara, Rodrigo Labat Marcos, Andrey Jorge Serra, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2017. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats—part 1: morphological and functional aspects. Lasers in Medical Science 32:9, 2111-2120. [Crossref]

- 31. Shaiane Silva Tomazoni, Lúcio Frigo, Tereza Cristina dos Reis Ferreira, Heliodora Leão Casalechi, Simone Teixeira, Patrícia de Almeida, Marcelo Nicolas Muscara, Rodrigo Labat Marcos, Andrey Jorge Serra, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2017. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats—part 2: biochemical aspects. *Lasers in Medical Science* 32:8, 1879-1887. [Crossref]
- 32. F.A. Machado, C.S. Peserico, P.V. Mezzaroba, F.A. Manoel, D.F. da Silva. 2017. Light-emitting diodes (LED) therapy applied between two running time trials has a moderate effect on attenuating delayed onset muscle soreness but does not change recovery markers and running performance. *Science & Sports* 32:5, 286-294. [Crossref]
- 33. Ana Lúcia Borges de Souza Faria, Luis Augusto Lupato Conrado, Luiz Sergio Vanzela, Antonio Balbin Villaverde, Egberto Munin. 2017. Application of phototherapy for the healing of the navels of neonatal dairy calves. *Lasers in Medical Science* 32:7, 1579-1586. [Crossref]
- 34. Solange Almeida dos Santos, Marcia Ataize dos Santos Vieira, Maira Cécilia Brandão Simões, Andrey Jorge Serra, Ernesto Cesar Leal-Junior, Paulo de Tarso Camillo de Carvalho. 2017. Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model. *Lasers in Medical Science* 32:5, 1071-1079. [Crossref]
- 35. Aryane Flauzino Machado, Jéssica Kirsch Micheletti, Franciele Marques Vanderlei, Fabio Yuzo Nakamura, Ernesto Cesar Pinto Leal-Junior, Jayme Netto Junior, Carlos Marcelo Pastre. 2017. Effect of low-level laser therapy (LLLT) and lightemitting diodes (LEDT) applied during combined training on performance and post-exercise recovery: protocol for a randomized placebo-controlled trial. *Brazilian Journal of Physical Therapy* 21:4, 296-304. [Crossref]
- 36. Grazieli da Silva, Hewelayne Suelyn Gomes, Morgana Neves, Jhenifer Karvat, Gustavo Kiyosen Nakayama, Gladson Ricardo Flor Bertolini. 2017. Proprioceptive evaluation in healthy women undergoing Infrared Low Level Laser Therapy. *Motriz: Revista de Educação Física* 23:2. . [Crossref]
- 37. Loraine Sydney Kagan, James T. Heaton. 2017. The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue. *Journal of Voice* **31**:3, 384.e15-384.e23. [Crossref]
- 38. Sean Redman. Laser Therapy and Equine Performance Maintenance 390-400. [Crossref]
- 39. Thiago De Marchi, Vinicius Mazzochi Schmitt, Guilherme Pinheiro Machado, Juliane Souza de Sene, Camila Dallavechia de Col, Olga Tairova, Mirian Salvador, Ernesto Cesar Pinto Leal-Junior. 2017. Does photobiomodulation therapy is better than cryotherapy in muscle recovery after a high-intensity exercise? A randomized, double-blind, placebo-controlled clinical trial. *Lasers in Medical Science* 32:2, 429-437. [Crossref]
- 40. Solange Almeida dos Santos, Andrey Jorge Serra, Tatiane Garcia Stancker, Maíra Cecília Brandão Simões, Marcia Ataíze dos Santos Vieira, Ernesto Cesar Leal-Junior, Marko Prokic, Andrea Vasconsuelo, Simone Silva Santos, Paulo de Tarso Camillo de Carvalho. 2017. Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review. Oxidative Medicine and Cellular Longevity 2017, 1-8. [Crossref]
- 41. Cleber Ferraresi, Ying-Ying Huang, Michael R. Hamblin. 2016. Photobiomodulation in human muscle tissue: an advantage in sports performance?. *Journal of Biophotonics* 9:11-12, 1273-1299. [Crossref]
- Fernando Kenji Nampo, Vinícius Cavalheri, Francyelle dos Santos Soares, Solange de Paula Ramos, Enilton Aparecido Camargo. 2016. Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. *Lasers in Medical Science* 31:9, 1957-1970. [Crossref]
- 43. Clécio Gabriel de Souza, Daniel Tezoni Borges, Liane de Brito Macedo, Jamilson Simões Brasileiro. 2016. Low-level laser therapy reduces the fatigue index in the ankle plantar flexors of healthy subjects. *Lasers in Medical Science* 31:9, 1949-1955. [Crossref]
- 44. Henrique D. Pinto, Adriane A. Vanin, Eduardo F. Miranda, Shaiane S. Tomazoni, Douglas S. Johnson, Gianna M. Albuquerque-Pontes, Ivo de O. Aleixo, Vanessa dos S. Grandinetti, Heliodora L. Casalechi, Paulo de Tarso C. de Carvalho, Ernesto Cesar P. Leal Junior. 2016. Photobiomodulation Therapy Improves Performance and Accelerates Recovery of High-Level Rugby Players in Field Test. *Journal of Strength and Conditioning Research* 30:12, 3329-3338. [Crossref]
- 45. Adriane Aver Vanin, Thiago De Marchi, Shaiane Silva Tomazoni, Olga Tairova, Heliodora Leão Casalechi, Paulo de Tarso Camillo de Carvalho, Jan Magnus Bjordal, Ernesto Cesar Leal-Junior. 2016. Pre-Exercise Infrared Low-Level Laser Therapy (810nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans, What Is the Optimal Dose? A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. *Photomedicine and Laser Surgery* 34:10, 473-482. [Crossref]

- 46. Marcele Florêncio das Neves, Mariana César Ribeiro dos Reis, Eliana Aparecida Fonseca de Andrade, Fernanda Pupio Silva Lima, Renata Amadei Nicolau, Emília Ângela Loschiavo Arisawa, Adriano Oliveira Andrade, Mário Oliveira Lima. 2016. Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. *Lasers in Medical Science* 31:7, 1293-1300. [Crossref]
- 47. Lilach Gavish, S. David Gertz. Chapter 26 Low-Level Laser and Experimental Aortic Aneurysm 471-490. [Crossref]
- 48. Cleber Ferraresi, Nivaldo Parizotto, Vanderlei Bagnato, Michael R. Hamblin. Chapter 34 Use of Low-Level Laser Therapy and Light-Emitting Diode Therapy to Improve Muscle Performance and Prevent Damage 609-640. [Crossref]
- 49. Caroline Bublitz, Ana Claudia Muniz Renno, Rodrigo Santin Ramos, Livia Assis, Carlos Alberto Cyrillo Sellera, Renata Trimer, Audrey Borghi-Silva, Ross Arena, Solange Guizilini. 2016. Acute effects of low-level laser therapy irradiation on blood lactate and muscle fatigue perception in hospitalized patients with heart failure—a pilot study. *Lasers in Medical Science* **31**:6, 1203-1209. [Crossref]
- 50. Mateus Rossato, Rodolfo A. Dellagrana, Fábio J. Lanferdini, Raphael L. Sakugawa, Caetano D. Lazzari, Bruno M. Baroni, Fernando Diefenthaeler. 2016. Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. *Lasers in Medical Science* **31**:6, 1237-1244. [Crossref]
- 51. Simone A. Guaraldo, Andrey Jorge Serra, Eliane Martins Amadio, Ednei Luis Antônio, Flávio Silva, Leslie Andrews Portes, Paulo José Ferreira Tucci, Ernesto Cesar Pinto Leal-Junior, Paulo de Tarso Camillo de Carvalho. 2016. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise. *Lasers in Medical Science* **31**:5, 833-840. [Crossref]
- 52. Areolino Pena Matos, Ricardo Scarparo Navarro, Império Lombardi Jr., Aldo Brugnera Jr., Egberto Munin, Antonio Balbin Villaverde. 2016. Pre-exercise LED phototherapy (638 nm) prevents grip strength loss in elderly women: A double-blind randomized controlled trial. *Isokinetics and Exercise Science* 24:2, 83-89. [Crossref]
- 53. Paulo Cesar Lock Silveira, Debora da Luz Scheffer, Viviane Glaser, Aline Pertile Remor, Ricardo Aurino Pinho, Aderbal Silva Aguiar Junior, Alexandra Latini. 2016. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. *Free Radical Research* **50**:5, 503-513. [Crossref]
- 54. Alessandro Moura Zagatto, Solange de Paula Ramos, Fábio Yuzo Nakamura, Fábio Santos de Lira, Rodrigo Álvaro Brandão Lopes-Martins, Rodrigo Leal de Paiva Carvalho. 2016. Effects of low-level laser therapy on performance, inflammatory markers, and muscle damage in young water polo athletes: a double-blind, randomized, placebo-controlled study. *Lasers in Medical Science* 31:3, 511-521. [Crossref]
- 55. Samereh Dehghani Soltani, Abdolreza Babaee, Mohammad Shojaei, Parvin Salehinejad, Fatemeh Seyedi, Mahshid JalalKamali, Seyed Noureddin Nematollahi-Mahani. 2016. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. *Lasers in Medical Science* **31**:2, 255-261. [Crossref]
- 56. Júlia Luiza Perini, Vítor Scotta Hentschke, Anelise Sonza, Pedro Dal Lago. 2016. Long-term low-level laser therapy promotes an increase in maximal oxygen uptake and exercise performance in a dose-dependent manner in Wistar rats. *Lasers in Medical Science* **31**:2, 241-248. [Crossref]
- Fernando Kenji Nampo, Vinícius Cavalheri, Solange de Paula Ramos, Enilton Aparecido Camargo. 2016. Effect of lowlevel phototherapy on delayed onset muscle soreness: a systematic review and meta-analysis. *Lasers in Medical Science* 31:1, 165-177. [Crossref]
- Takahisa Yonezu. 2016. The Effect of Low Level Laser Therapy on Muscle Fatigue. Nippon Laser Igakkaishi 36:4, 436-439.
 [Crossref]
- 59. Cristina de Oliveira Francisco, Thomas Beltrame, Cleber Ferraresi, Nivaldo Antonio Parizotto, Vanderlei Salvador Bagnato, Audrey Borghi Silva, Benedito Galvão Benze, Alberto Porta, Aparecida Maria Catai. 2015. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial. *Trials* 16:1. [Crossref]
- Lindsey M. Kurach, Bryden J. Stanley, Krista M. Gazzola, Michele C. Fritz, Barbara A. Steficek, Joe G. Hauptman, Kristen J. Seymour. 2015. The Effect of Low-Level Laser Therapy on the Healing of Open Wounds in Dogs. *Veterinary Surgery* 44:8, 988-996. [Crossref]
- 61. Cleber Ferraresi, Nivaldo Antonio Parizotto, Marcelo Victor Pires de Sousa, Beatriz Kaippert, Ying-Ying Huang, Tomoharu Koiso, Vanderlei Salvador Bagnato, Michael R. Hamblin. 2015. Light-emitting diode therapy in exercise-

trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. *Journal of Biophotonics* 8:9, 740-754. [Crossref]

- 62. Beatriz Guimarães Ribeiro, Agnelo Neves Alves, Lucas Andreo Dias dos Santos, Kristianne Porta Santos Fernandes, Tatiane Matarazzo Cantero, Mariana Teixeira Gomes, Cristiane Miranda França, Daniela de Fátima Teixeira da Silva, Sandra Kalil Bussadori, Raquel Agnelli Mesquita-Ferrari. 2015. The effect of low-level laser therapy (LLLT) applied prior to muscle injury. *Lasers in Surgery and Medicine* **47**:7, 571-578. [Crossref]
- 63. Vania Maria de Araújo Giaretta, Luiz Prudêncio Santos, Ana Maria Barbosa, Stephen Hyslop, Alexandre Pinto Corrado, Renata Amadei Nicolau, José Carlos Cogo. 2015. Effect of low-level laser therapy (GaAlAs - λ660 nm) on muscle function. *Research on Biomedical Engineering* **31**:3, 241-248. [Crossref]
- 64. Jiejiao Zheng, Wang Xueqiang, Mao Ling Wei, Shujie Lou, Shulin Cheng, Mark Wu, Yanyan Song, Yinghui Hua, Zhenwen Liang. 2015. Low-level laser therapy for neck pain. *Cochrane Database of Systematic Reviews* 313. [Crossref]
- 65. Vanessa dos Santos Grandinétti, Eduardo Foschini Miranda, Douglas Scott Johnson, Paulo Roberto Vicente de Paiva, Shaiane Silva Tomazoni, Adriane Aver Vanin, Gianna Móes Albuquerque-Pontes, Lucio Frigo, Rodrigo Labat Marcos, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2015. The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin. *Lasers in Medical Science* **30**:5, 1575-1581. [Crossref]
- 66. Raquel Munhoz da Silveira Campos, Ana Raimunda Dâmaso, Deborah Cristina Landi Masquio, Antonio Eduardo Aquino, Marcela Sene-Fiorese, Fernanda Oliveira Duarte, Lian Tock, Nivaldo Antonio Parizotto, Vanderlei Salvador Bagnato. 2015. Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults. *Lasers in Medical Science* **30**:5, 1553-1563. [Crossref]
- 67. Cleber Ferraresi, Marcelo Victor Pires de Sousa, Ying-Ying Huang, Vanderlei Salvador Bagnato, Nivaldo Antonio Parizotto, Michael R. Hamblin. 2015. Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. *Lasers in Medical Science* **30**:4, 1259-1267. [Crossref]
- 68. Cleber Ferraresi, Ricardo Vinicius dos Santos, Guilherme Marques, Marcelo Zangrande, Roberley Leonaldo, Michael R. Hamblin, Vanderlei Salvador Bagnato, Nivaldo Antonio Parizotto. 2015. Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. *Lasers in Medical Science* 30:4, 1281-1287. [Crossref]
- 69. Mariana César Ribeiro dos Reis, Eliana Aparecida Fonseca de Andrade, Ana Carolina Lacerda Borges, Djenifer Queiroz de Souza, Fernanda Pupio Silva Lima, Renata Amadei Nicolau, Adriano Oliveira Andrade, Mário Oliveira Lima. 2015. Immediate effects of low-intensity laser (808 nm) on fatigue and strength of spastic muscle. *Lasers in Medical Science* 30:3, 1089-1096. [Crossref]
- 70. Eliane Martins Amadio, Andrey Jorge Serra, Simone A. Guaraldo, José Antônio Silva, Ednei Luis Antônio, Flávio Silva, Leslie Andrews Portes, Paulo José Ferreira Tucci, Ernesto Cesar Pinto Leal-Junior, Paulo de Tarso Camillo de Carvalho. 2015. The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training. *Lasers in Medical Science* **30**:3, 1127-1134. [Crossref]
- 71. Camila Mayumi Martin Kakihata, Jéssica Aline Malanotte, Jessica Yumie Higa, Tatiane Kamada Errero, Sandra Lucinei Balbo, Gladson Ricardo Flor Bertolini. 2015. Influence of low-level laser therapy on vertical jump in sedentary individuals. *Einstein (São Paulo)* 13:1, 41-46. [Crossref]
- 72. Ernesto Cesar Pinto Leal-Junior, Adriane Aver Vanin, Eduardo Foschini Miranda, Paulo de Tarso Camillo de Carvalho, Simone Dal Corso, Jan Magnus Bjordal. 2015. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. *Lasers in Medical Science* 30:2, 925-939. [Crossref]
- 73. Ernesto Cesar Pinto Leal-Junior. 2015. Photobiomodulation Therapy in Skeletal Muscle: From Exercise Performance to Muscular Dystrophies. *Photomedicine and Laser Surgery* 33:2, 53-54. [Crossref]
- 74. Gianna Móes Albuquerque-Pontes, Rodolfo de Paula Vieira, Shaiane Silva Tomazoni, Cláudia Oliveira Caires, Victoria Nemeth, Adriane Aver Vanin, Larissa Aline Santos, Henrique Dantas Pinto, Rodrigo Labat Marcos, Jan Magnus Bjordal, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2015. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. *Lasers in Medical Science* 30:1, 59-66. [Crossref]

- 75. Karen J. McCain, Melanie Farrar, Patricia S. Smith. 2015. Gait Recovery in a Girl With Ischemic Spinal Cord Stroke. *Pediatric Physical Therapy* 27:2, 190-199. [Crossref]
- 76. Kelly A. Larkin-Kaiser, Evangelos Christou, Mark Tillman, Steven George, Paul A. Borsa. 2015. Near-Infrared Light Therapy to Attenuate Strength Loss After Strenuous Resistance Exercise. *Journal of Athletic Training* **50**:1, 45-50. [Crossref]
- 77. Wouber Hérickson de Brito Vieira, Raphael Machado Bezerra, Renata Alencar Saldanha Queiroz, Nícia Farias Braga Maciel, Nivaldo Antonio Parizotto, Cleber Ferraresi. 2014. Use of Low-Level Laser Therapy (808 nm) to Muscle Fatigue Resistance: A Randomized Double-Blind Crossover Trial. *Photomedicine and Laser Surgery* 32:12, 678-685. [Crossref]
- 78. Ernesto Cesar Pinto Leal-Junior, Douglas Scott Johnson, Anita Saltmarche, Timothy Demchak. 2014. Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. *Lasers in Medical Science* **29**:6, 1839-1847. [Crossref]
- 79. Micheli Biasibetti, Denise B. Rojas, Vítor S. Hentschke, Dinara Jaqueline Moura, Marlus Karsten, Clóvis M. D. Wannmacher, Jenifer Saffi, Pedro Dal Lago. 2014. The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure. *Lasers in Medical Science* 29:6, 1895-1906. [Crossref]
- 80. Fernanda Colella Antonialli, Thiago De Marchi, Shaiane Silva Tomazoni, Adriane Aver Vanin, Vanessa dos Santos Grandinetti, Paulo Roberto Vicente de Paiva, Henrique Dantas Pinto, Eduardo Foschini Miranda, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2014. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. *Lasers in Medical Science* 29:6, 1967-1976. [Crossref]
- Ashley N. Stich, Wayne S. Rosenkrantz, Craig E. Griffin. 2014. Clinical efficacy of low-level laser therapy on localized canine atopic dermatitis severity score and localized pruritic visual analog score in pedal pruritus due to canine atopic dermatitis. *Veterinary Dermatology* 25:5, 464-e74. [Crossref]
- 82. Tanupriya Agrawal, Gaurav K. Gupta, Vikrant Rai, James D. Carroll, Michael R. Hamblin. 2014. Pre-Conditioning with Low-Level Laser (Light) Therapy: Light before the Storm. *Dose-Response* 12:4, dose-response.1. [Crossref]
- 83. Larissa Aline Santos, Rodrigo Labat Marcos, Shaiane Silva Tomazoni, Adriane Aver Vanin, Fernanda Colella Antonialli, Vanessa dos Santos Grandinetti, Gianna Móes Albuquerque-Pontes, Paulo Roberto Vicente de Paiva, Rodrigo Álvaro Brandão Lopes-Martins, Paulo de Tarso Camillo de Carvalho, Jan Magnus Bjordal, Ernesto Cesar Pinto Leal-Junior. 2014. Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. *Lasers in Medical Science* 29:5, 1617-1626. [Crossref]
- 84. F. Gonzalez-Lima, Douglas W. Barrett. 2014. Augmentation of cognitive brain functions with transcranial lasers. *Frontiers in Systems Neuroscience* 8. . [Crossref]
- 85. Ernesto Cesar Pinto Leal-Junior, Patrícia de Almeida, Shaiane Silva Tomazoni, Paulo de Tarso Camillo de Carvalho, Rodrigo Álvaro Brandão Lopes-Martins, Lucio Frigo, Jon Joensen, Mark I. Johnson, Jan Magnus Bjordal. 2014. Superpulsed Low-Level Laser Therapy Protects Skeletal Muscle of mdx Mice against Damage, Inflammation and Morphological Changes Delaying Dystrophy Progression. *PLoS ONE* 9:3, e89453. [Crossref]
- 86. Vanessa Batista da Costa Santos, Solange de Paula Ramos, Vinícius Flávio Milanez, Julio Cesar Molina Corrêa, Rubens Igor de Andrade Alves, Ivan Frederico Lupiano Dias, Fábio Yuzo Nakamura. 2014. LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. *Lasers in Medical Science* 29:2, 599-605. [Crossref]
- 87. Patrícia de Almeida, Shaiane Silva Tomazoni, Lucio Frigo, Paulo de Tarso Camillo de Carvalho, Adriane Aver Vanin, Larissa Aline Santos, Gianna Móes Albuquerque-Pontes, Thiago De Marchi, Olga Tairova, Rodrigo Labat Marcos, Rodrigo Álvaro Brandão Lopes-Martins, Ernesto Cesar Pinto Leal-Junior. 2014. What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy?. *Lasers in Medical Science* 29:2, 653-658. [Crossref]
- 88. Filipe Abdalla dos Reis, Baldomero Antonio Kato da Silva, Erica Martinho Salvador Laraia, Rhaiza Marques de Melo, Patrícia Henrique Silva, Ernesto Cesar Pinto Leal-Junior, Paulo de Tarso Camillo de Carvalho. 2014. Effects of Pre- or Post-Exercise Low-Level Laser Therapy (830nm) on Skeletal Muscle Fatigue and Biochemical Markers of Recovery in Humans: Double-Blind Placebo-Controlled Trial. *Photomedicine and Laser Surgery* 32:2, 106-112. [Crossref]
- 89. Eduardo Foschini Miranda, Ernesto Cesar Pinto Leal-Junior, Paulo Henrique Marchetti, Simone Dal Corso. 2014. Acute effects of light emitting diodes therapy (LEDT) in muscle function during isometric exercise in patients with chronic

obstructive pulmonary disease: preliminary results of a randomized controlled trial. *Lasers in Medical Science* **29**:1, 359-365. [Crossref]

- 90. Adriano de Oliveira, Adriane Vanin, Thiago De Marchi, Fernanda Antonialli, Vanessa Grandinetti, Paulo Roberto de Paiva, Gianna Albuquerque Pontes, Larissa Santos, Ivo Aleixo Junior, Paulo de Tarso de Carvalho, Jan Bjordal, Ernesto Cesar Leal-Junior. 2014. What is the ideal dose and power output of low-level laser therapy (810 nm) on muscle performance and post-exercise recovery? Study protocol for a double-blind, randomized, placebo-controlled trial. *Trials* 15:1, 69. [Crossref]
- 91. Renan Hideki Higashi, Renata Luri Toma, Helga Tatiana Tucci, Cristiane Rodrigues Pedroni, Pryscilla Dieguez Ferreira, Gabriel Sobrinho Baldini, Mariana Chaves Aveiro, Audrey Borghi-Silva, Anamaria Siriani de Oliveira, Ana Claudia Muniz Renno. 2013. Effects of Low-Level Laser Therapy on Biceps Braquialis Muscle Fatigue in Young Women. *Photomedicine* and Laser Surgery 31:12, 586-594. [Crossref]
- 92. Amanda Soares Felismino, Eduardo Caldas Costa, Marcelo Saldanha Aoki, Cleber Ferraresi, Telma Maria de Araújo Moura Lemos, Wouber Hérickson de Brito Vieira. 2013. Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. *Lasers in Medical Science* 33. [Crossref]
- Julio C. Rojas, F. Gonzalez-Lima. 2013. Neurological and psychological applications of transcranial lasers and LEDs. Biochemical Pharmacology 86:4, 447-457. [Crossref]
- 94. Romain Denis, Christopher O'Brien, Eamonn Delahunt. 2013. The effects of light emitting diode therapy following high intensity exercise. *Physical Therapy in Sport* 14:2, 110-115. [Crossref]
- 95. Patrícia de Almeida, Rodrigo Álvaro Brandão Lopes-Martins, Shaiane Silva Tomazoni, Gianna Móes Albuquerque-Pontes, Larissa Aline Santos, Adriane Aver Vanin, Lucio Frigo, Rodolfo P Vieira, Regiane Albertini, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior. 2013. Low-Level Laser Therapy and Sodium Diclofenac in Acute Inflammatory Response Induced by Skeletal Muscle Trauma: Effects in Muscle Morphology and mRNA Gene Expression of Inflammatory Markers. *Photochemistry and Photobiology* 89:2, 501-507. [Crossref]
- D.W. Barrett, F. Gonzalez-Lima. 2013. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. *Neuroscience* 230, 13-23. [Crossref]
- 97. Paul A. Borsa, Kelly A. Larkin, Jerry M. True. 2013. Does Phototherapy Enhance Skeletal Muscle Contractile Function and Postexercise Recovery? A Systematic Review. *Journal of Athletic Training* **48**:1, 57-67. [Crossref]
- 98. Shaiane Silva Tomazoni, Ernesto Cesar Pinto Leal-Junior, Rodney Capp Pallotta, Vanessa De Godoi, Rafael Paolo Rossi, LÚcio Frigo, Patrícia Sardinha Leonardo, Patrícia De Almeida, Rodrigo Álvaro Brandão Lopes-Martins. 2012. Effect of simvastatin on passive strain-induced skeletal muscle injury in rats. *Muscle & Nerve* 46:6, 899-907. [Crossref]
- 99. Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior, Ana Carolina Araruna Alves, Caroline Sobral de Melo Rambo, Luciana Maria Malosa Sampaio, Claudia Santos Oliveira, Regiane Albertini, Luis Vicente Franco de Oliveira. 2012. Effect of low-level laser therapy on pain, quality of life and sleep in patients with fibromyalgia: study protocol for a double-blinded randomized controlled trial. *Trials* 13:1. [Crossref]
- 100. Lívia Assis, Ana I.S. Moretti, Thalita B. Abrahão, Vivian Cury, Heraldo P. Souza, Michael R. Hamblin, Nivaldo A. Parizotto. 2012. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. *Lasers in Surgery and Medicine* 44:9, 726-735. [Crossref]
- 101. Jungsun Hong, Jong-In Youn. 2012. Development of Real-time Monitoring System for Muscle Tension by High Intensity Laser Therapy. *Journal of Biomedical Engineering Research* 33:3, 128-134. [Crossref]
- 102. Lucila H. Silva, Meiricris T. Silva, Rita M. Gutierrez, Talita C. Conte, Cláudio A. Toledo, Marcelo S. Aoki, Richard E. Liebano, Elen H. Miyabara. 2012. GaAs 904-nm laser irradiation improves myofiber mass recovery during regeneration of skeletal muscle previously damaged by crotoxin. *Lasers in Medical Science* 27:5, 993-1000. [Crossref]
- 103. François Bieuzen, Hervé Pournot, Rémy Roulland, Christophe Hausswirth. 2012. Recovery After High-Intensity Intermittent Exercise in Elite Soccer Players Using VEINOPLUS Sport Technology for Blood-Flow Stimulation. *Journal* of Athletic Training 47:5, 498-506. [Crossref]
- 104. J. K. Malone, G. F. Coughlan, L. Crowe, G. C. Gissane, B. Caulfield. 2012. The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes. *European Journal of Applied Physiology* 112:7, 2421-2432. [Crossref]
- 105. Patrícia de Almeida, Rodrigo Álvaro Brandão Lopes-Martins, Thiago De Marchi, Shaiane Silva Tomazoni, Regiane Albertini, João Carlos Ferrari Corrêa, Rafael Paolo Rossi, Guilherme Pinheiro Machado, Daniela Perin da Silva, Jan

Magnus Bjordal, Ernesto Cesar Pinto Leal Junior. 2012. Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better?. *Lasers in Medical Science* 27:2, 453-458. [Crossref]

- 106. Adenilson Souza Fonseca, Mauro Geller, Mario Bernardo Filho, Samuel Santos Valença, Flavia de Paoli. 2012. Low-level infrared laser effect on plasmid DNA. *Lasers in Medical Science* **27**:1, 121-130. [Crossref]
- 107. Thiago De Marchi, Ernesto Cesar Pinto Leal Junior, Celiana Bortoli, Shaiane Silva Tomazoni, Rodrigo Álvaro Brandão Lopes-Martins, Mirian Salvador. 2012. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. *Lasers in Medical Science* 27:1, 231-236. [Crossref]
- 108. Luciano Ramos, Ernesto Cesar Pinto Leal Junior, Rodney Capp Pallotta, Lucio Frigo, Rodrigo Labat Marcos, Maria Helena Catelli de Carvalho, Jan Magnus Bjordal, Rodrigo Álvaro Brandão Lopes-Martins. 2012. Infrared (810 nm) Low-Level Laser Therapy in Experimental Model of Strain-Induced Skeletal Muscle Injury in Rats: Effects on Functional Outcomes. *Photochemistry and Photobiology* 88:1, 154-160. [Crossref]
- 109. Dandan Yang, Xiaoying Wu, Wensheng Hou, Xiaolin Zheng, Jun Zheng, Yingtao Jiang. 2012. Assessing the Therapeutic Effect of 630 nm Light-Emitting Diodes Irradiation on the Recovery of Exercise-Induced Hand Muscle Fatigue with Surface Electromyogram. *International Journal of Photoenergy* 2012, 1-8. [Crossref]
- 110. Cleber Ferraresi, Michael R. Hamblin, Nivaldo A. Parizotto. 2012. Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. *Photonics & Lasers in Medicine* 1:4. . [Crossref]
- 111. Ji-Hyun Kim, Hyo-Hoon Choi, Jong-In Youn. 2011. Muscle Fatigue Analysis Based on Electromyography Signals for The Evaluation of Low-Level Laser Therapy. *Journal of Biomedical Engineering Research* 32:4, 319-327. [Crossref]
- 112. Patrícia de Almeida, Rodrigo Álvaro Brandão Lopes-Martins, Shaiane Silva Tomazoni, José Antônio Silva Jr, Paulo de Tarso Camillo de Carvalho, Jan Magnus Bjordal, Ernesto Cesar Pinto Leal Junior. 2011. Low-level Laser Therapy Improves Skeletal Muscle Performance, Decreases Skeletal Muscle Damage and Modulates mRNA Expression of COX-1 and COX-2 in a Dose-dependent Manner. *Photochemistry and Photobiology* 87:5, 1159-1163. [Crossref]
- 113. Jan Magnus Bjordal, Rene-Jean Bensadoun, Jan Tunèr, Lucio Frigo, Kjersti Gjerde, Rodrigo AB Lopes-Martins. 2011. A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. *Supportive Care in Cancer* 19:8, 1069-1077. [Crossref]
- 114. Jung-Hoon Lee, Sun-Min Lee. 2011. The immediate effects of 830-nm low-level laser therapy on the myofascial trigger point of the upper trapezius muscle in visual display terminal workers: A randomized, double-blind, clinical trial. *International Journal of Contents* 7:2, 59-63. [Crossref]
- 115. Ernesto Cesar Pinto Leal Junior, Bruno Manfredini Baroni, Rafael Paolo Rossi, Vanessa de Godoi, Thiago De Marchi, Shaiane Silva Tomazoni, Patrícia de Almeida, Mirian Salvador, Douglas Grosselli, Rafael Abeche Generosi, Maira Basso, José Luis Mancalossi, Rodrigo Álvaro Brandão Lopes Martins. 2011. A fototerapia com diodo emissor de luz (LEDT) aplicada pré-exercício inibe a peroxidação lipídica em atletas após exercício de alta intensidade: um estudo preliminar. *Revista Brasileira de Medicina do Esporte* 17:1, 8-12. [Crossref]